4.2 Enrichment and Extension

Adding, Subtracting, and Multiplying Polynomials

In Exercises 1–6, use the properties of adding, subtracting, and multiplying polynomials to solve for the variables.

1. When \(ax^2 + bx - 1 \) is added to \(ax^3 + 2bx^2 - 2x - 1 \), the result is \(3x^3 + 11x^2 + 2x - c \). Find \(a, b, \) and \(c \).

2. When \(2bx^4 + x^2 - b \) is added to \(3x^3 - dx^2 + cx + a \), the result is \(6x^4 + bx^3 - 4x^2 + 2x - 2 \). Find \(a, b, c, \) and \(d \).

3. When \(bx^4 - x^2 + 2x - 4 \) is subtracted from \(7x^4 + cx^2 + 5x + 6 \), the result is \(5x^4 + ax^3 - 3x^2 + 3x + d \). Find \(a, b, c, \) and \(d \).

4. When \(5x^3 - 3ax + 6 \) is subtracted from \(10x^3 + ax^3 - x + b \), the result is \(cx^3 - 4x^2 + dx - 3 \). Find \(a, b, c, \) and \(d \).

5. The expression \(35x^3 + 21x^4 + 7x^3 \) is \(ax^3 \) times greater than \(5x^3 + (3 + b)x + c \). Find \(a, b, \) and \(c \).

6. The expression \(ax^2 - bx + 25 \) is \(3x - c \) times greater than \(3x - c \). Find \(a, b, \) and \(c \).

7. Complete the missing values and bottom row of Pascal’s Triangle.

\[
\begin{array}{cccccc}
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
& 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\]

In Exercises 8–13, use Pascal’s Triangle to expand \((a + b)^n\) with \(n = 6 \), for the \(a-b \) pair given.

8. \(a = x \) and \(b = 1 \)

9. \(a = 2y \) and \(b = -2 \)

10. \(a = 1 \) and \(b = -y \)

11. \(a = x^2 \) and \(b = 0 \)

12. \(a = x^2 \) and \(b = -2 \)

13. \(a = bc \) and \(b = de \)
1. \(ax^2 + bx - 1\)
 \(\frac{a x^3 + 2b x^2 - 2x - 1}{3x^3 + 11x^2 + 2x - c}\)
 \(a = 3\)
 \(b = 4\)
 \(c = 2\)

 \(b - 2 = 2\)
 \(b = 4\)
 \(c = 2\)

2. \(2b x^4 + x^2 - b\)
 \(\frac{3x^3 - c x^2 + cx + a}{6x^4 + bx^3 - 4x^2 + 2x - 2}\)
 \(a = 1\)
 \(b = 3\)
 \(c = 2\)
 \(d = 5\)

 \(2b = 6\)
 \(1 - d = -4\)
 \(-3 + a = -2\)

 \(b = 3\)
 \(-d = -5\)
 \(+3 + 3\)

 \(d = 5\)
 \(a = 1\)

3. \(7x^4 \downarrow + c x^2 + 5x + b\)
 \(-b x^4 \downarrow + x^2 - 2x + y\)
 \(\frac{5x^4 + ax^3 - 3x^2 + 3x + d}{7 - b = 5\)
 \(c + 1 = -3\)
 \(-b = -2\)
 \(-1 - 1\)

 \(b = 2\)
 \(c = -4\)
8-13 7 spaces - 7th line of Pascals

\[a = x \]
\[b = 1 \]

\[x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1 \]

9)
\[a = 2x \]
\[b = -2 \]

\[\frac{\binom{32}{2}}{64y^6} - \frac{384y^5}{960y^4} - \frac{128y^3}{960y^2} \]

\[64y^6 - 384y^5 + 960y^4 - 1280y^3 + 960y^2 - 384y + 64 \]

10)
\[a = \frac{1}{i} \]
\[b = -y \]

\[1 - 6y + 15y^2 - 20y^3 + 15y^4 - 6y^5 + y^6 \]

11)
\[a = x^2 \]
\[b = 0 \]

\[x^{12} \]

12)
\[a = x^2 \]
\[b = -2 \]

\[\chi^{12} - 12x^{10} + 60x^8 - 160x^6 + 240x^4 - 192x^2 + 64 \]