Station 1

1. Write an equation of a parabola that passes through (6, 35) and has vertex (-1, 14)
 * in vertex form.
2) Write an equation of the parabola whose x-intercepts are 12 and -6 and passes through (14, 4) in intercept form.
3) Write in standard form

a.) \(y = -4(x - 3)^2 + 7 \)

b.) \(y = \frac{1}{2}(x - 6)(x + 2) \)
Station 4

4.) Identify the focus, directrix and axis of symmetry.

a.) $x = \frac{1}{24} y^2$

b.) $6x^2 + 3y = 0$
5) Write an equation of the parabola shown.

a) Focus: (3, 0)
 Directrix: \(x = -3 \)
Station 6

6. Identify the vertex, focus, directrix and axis of symmetry

a) \(y = \frac{1}{8} (x - 3)^2 + 2 \)

b) \(x = -3(y + 4)^2 + 2 \)
7. Graph the quadratic inequality

a.) \(y < -x^2 + 4 \)

b.) \(y > -\frac{1}{2}(x+3)^2 + 2 \)
8.) The path of a placekicked football can be modeled by the function
\[y = -0.026x(x - 46) \] where \(x \) is the horizontal distance (in yards) and \(y \) is the corresponding height (in yards).

a.) How far is the football kicked?

b.) What is the football's maximum height?
Station 1

1) \(y = \frac{3}{7} (x+1)^2 + 14 \)

Station 2

a) \(y = -\frac{1}{10} (x-12)(x+6) \)

Station 3

3) a) \(y = -4x^2 + 24x - 29 \)
b) \(y = \frac{1}{2}x^2 - 2x - 6 \)

Station 4

4) a) Focus \((b, 0)\)

Directrix \(x = b\)

Axis of symmetry \(y = 0\)

b) Focus \((0, -\frac{1}{8})\)

Directrix \(y = \frac{1}{8}\)

Axis of symmetry \(x = 0\)

Station 5

5) a) \(y = \frac{1}{32}x^2 \)

b) \(x = \frac{1}{12}y^2 \)

Station 6

6) a) Vertex \((3, 2)\)

Focus \((3, 4)\)

Directrix \(y = 0\)

Axis of symmetry \(x = 3\)

Station 7

7) a) \(y < -x^2 + 4 \)

Station 8

8) a) 400 yds

b) 13.75 yds

Station 9

Vertex: \((-3, 1)\)

\(y > -\frac{1}{2}(x+3)^2 + 2 \)
1. \(x, y \)
\((6, 35), (-1, 14) \)

\[35 = a(x+1)^2 + 14 \]
\[35 = a(7)^2 + 14 \]
\[35 = 49a + 14 \]
\[49a = 21 \]
\[a = \frac{21}{49} \]
\[a = \frac{3}{7} \]

2. \(P \) \((12, 0) \) \((-6, 0) \) \((14, y) \)

\[0 = a(14-12)(14+6) \]
\[0 = a(-2)(20) \]
\[0 = a(-40) \]
\[a = \frac{4}{40} \]
\[a = \frac{1}{10} \]

3.

a.) \[y = -4(x-3)(x-3) + 7 \]
\[y = -4(x^2 - 6x + 9) + 7 \]
\[y = -4x^2 + 24x - 36 + 7 \]
\[y = -4x^2 + 24x - 29 \]

b.) \[y = \frac{1}{2}(x-6)(x+2) \]
\[y = \frac{1}{2}(x^2 + 2x - 6x - 12) \]
\[y = \frac{1}{2}(x^2 - 4x - 12) \]
\[y = \frac{1}{2}x^2 - 2x - 6 \]
4.

a.) \(x = \frac{1}{24} y^2 \)
\[4p = 24 \]
\[p = 6 \]

Focus: \((0, 0)\)
Directrix: \(x = -6\)
Axis of Symmetry: \(y = 0\).

b.) \(6x^2 + 3y = 0\)
\[3y = -6x^2 \]
\[y = -2x^2 \]
\[\frac{1}{4p} \leq \frac{-2}{-2} \]
\[-8p = 1 \]
\[p = -\frac{1}{8} \]

Focus: \((0, -\frac{1}{8})\)
Directrix: \(y = \frac{1}{8}\)
AOS: \(x = 0\).

5.

a.) Vertex: \((0, 0)\)
Directrix: \(y = -8\)

So... **Focus:** \((0, 8)\)
\[p = 8 \]
\[y = \frac{1}{4(8)} x^2 \]
\[y = \frac{1}{32} x^2 \]

b.) **Focus:** \((3, 0)\)
Directrix: \(x = -3\)

Vertex: \((0, 0)\)
\[p = 3 \]
\[x = \frac{1}{4(3)} y^2 \]
\[x = \frac{1}{12} y^2 \]
* Formulas

\[y = \frac{1}{4p} x^2 \]

\[y = \frac{1}{4p} (x - k)^2 \quad \text{Vertex form!} \]

\[y = \frac{1}{4p} (x-h)^2 + k \Rightarrow \text{vertex (h, k)} \]

Not squared so... Focus: \((h, k+p) \) add first for Focus

Work with y space for \(\uparrow \)

Use opposite (not squared for \(\uparrow \))

\[\chi = \frac{1}{4p} y^2 \]

\[\chi = \frac{1}{4p} (y - k)^2 \quad \text{Vertex form but flip h, k} \]

\[\chi = \frac{1}{4p} (y - k)^2 + h \Rightarrow \text{Vertex: (h, k)} \quad \text{Still in this order!} \]

↑ Not squared so work with x space for \(\uparrow \)

Focus: \((h+p, k) \) *this time use \(\text{h+p and k} \)

Use opposite \(\uparrow \) for \(\Rightarrow \text{Directrix: } y = h - p \)
6. a) \(y = \frac{1}{8}(x-3)^2 + 2 \)
\[4p = 8 \quad \text{vertex} \ (3,2) \]
\[p = 2 \quad h = 3 \quad k = 2 \]
Focus: \((h, k+p)\) D: \(y = k-p\)
\[k+p = 2+2 = 4 \]
\[k-p = 2-2 = 0 \]

Vertex: \((3,2)\)
Focus: \((3,4)\)
Direct: \(y = 0\)
AOSE: \(x = 3\)
\[\Rightarrow "x" \ \text{of vertex or} \ x=h \]

b) \(x = -3(y+4)^2 + 2 \)
\[\frac{1}{4p} = -3 \quad \text{vertex} \ (2, -4) \]
\[4p = -\frac{1}{12} \quad h = 2 \quad k = -4 \]
Focus: \((h+p, k)\) D: \(x = h-p\)
\[x = \frac{23}{12} \]
D: \(x + \frac{1}{12} = \frac{23}{12} \)

7. See "answer sheet"

8. a) \(y = -0.026(x)(x-46) \)
\[y = -0.026(x)(x-46) \]

\(x\) intercepts: \((0,0)\) \((46,0)\)

\[\frac{46 \text{yds}}{} \]

b) \(\frac{0+46}{2} = 23 \)
\[y = -0.026(23)(23-46) \]
\[y = -0.026(23)(-23) \]
\[y = 13.754 \]
\[13.754 \text{yds} \]