Algebra 2: Quadratic Functions Word Problems

1.) The Hulk throws a boulder over his head at a foe standing 8 m away from him. The trajectory of the throw can be defined by the equation \(h = -0.5d^2 + 4d + 2.5 \), where \(h \) is the height in meters, and \(d \) is the horizontal distance in meters.

Vertex \((4, 10.5)\)

\[
\begin{align*}
\text{a) What is the maximum height reached by the boulder?} & \quad \frac{-b}{2a} = \frac{-4}{-1} = 4 \\
\text{b) Approximately how tall is the Hulk? (y intercept)} & \quad h = -0.5(4)^2 + 4(4) + 2.5 = 10.5 \\
\text{c) If his foe is not in the path of the trajectory, how far away from the Hulk will the boulder land? (Positive x-intercept) } & \text{Use calculator to find zero} \\
\text{d) If the Hulk’s enemy is 2.2 m tall and standing 8 m away, would the boulder hit him? } & \text{No} \\
\text{e) State the domain and range for this function.} & \text{D: [0, 8.6] R: [0, 10.5]} \\
\end{align*}
\]

2.) A ballerina leaps in the air defined by the equation \(h = -0.25d^2 + d \), where \(h \) is the height in meters above the ground and \(d \) is the distance in meters from the start.

Vertex \((2, 1)\)

\[
\begin{align*}
\text{a) How high does the ballerina leap at her highest point?} & \quad \frac{-b}{2a} = \frac{-1}{-0.5} = 2 \\
\text{b) How far away does she land from where she starts?} & \quad y = -0.25(2)^2 + 2 = 1 \\
\text{c) If there is a gym bag lying on the floor 3.5 m away that is 0.4 m high, does she land safely, or does she trip over the bag?} & \quad \text{Since she jumps from 0 height} \quad a(2) = 0 \quad \text{No, she does not land safely.}
\end{align*}
\]

3.) An archer shoots an arrow at a target 20 m away along the arc \(h = -0.02d^2 + 0.44d + 2.8 \) where \(h \) is the height in meters above the ground and \(d \) is the horizontal distance in meters from the start.

Vertex \((11, 5.22)\)

\[
\begin{align*}
\text{a) How tall is the archer?} & \quad 2.8 m \\
\text{b) What is the maximum height reached by the arrow?} & \quad 5.22 m \\
\text{c) If there is nothing in its way, how far away will the arrow hit the ground?} & \quad 27.16 m \\
\text{d) If there is a target 25 m away that is 1.5 m tall, will the arrow hit the target?} & \text{(25, 1.3) on curve depends on the size of the target}
\end{align*}
\]
4.) Daniel jumps from a cliff into the water below along the trajectory defined by the equation
\[h = 2t^2 - 8t + 6, \] where \(h \) is the height in meters above the water, and \(t \) is the time in seconds since the start of the jump.

\[\text{vertex} \ (2, -2) \]

a) Determine the x-intercepts, the y-intercept and the vertex.
\((3, 0) \) \((1, 0) \) \((0, 6) \)

b) What is the height of the cliff?
\[\text{6 m} \]

c) How long does it take Daniel before he touches the water?
\[1 \text{ Second} \]

d) How long is he underwater?
\[2 \text{ seconds} \]

e) How far underwater does he dive?
\[2 \text{ meters} \]

f) State the domain and range for this function.
\[[0, 3] \quad [-2, 6] \]

5.) Michelle volleys a volleyball in the arc \(h = -0.2d^2 + 1.2d + 1.8 \) where \(h \) is the height of the ball in meters and \(d \) is the horizontal distance from where Michelle is standing in meters.

\[\text{vertex} \ (3, 3.6) \]

\[\frac{-(1.2)}{2(-1.2)} = -0.5 \]
\[y = 0.5(3)^2 + 1.2(3) + 1.8 \]

a) What is the maximum height that the ball reaches?
\[3.6 \text{ m} \]

b) Once it has been hit, how far is the ball from Michelle when it reaches its maximum height?
\[3 - 1.8 = 1.2 \text{ m} \]

c) Approximately how tall is Michelle?
\[1.8 \text{ m} \]

d) How far away from Michelle does the ball land?
\[7.2 \text{ m} \]

e) If the court line is 10 m away from Michelle and the other team does not intercept the ball, will the ball land inside or outside the boundary?
Inside

f) If the net is 1 m away from Michelle and 3 m high, did the ball clear the net?
\[(1, 2.8) \text{ is on curve - it will not clear} \]

6.) Sammy hits a tennis ball in the arc \(h = -0.8d^2 + 2.4d + 1 \) where \(h \) is the height of the ball in meters and \(d \) is the horizontal distance in meters.

\[\text{vertex} \ (1.5, 2.8) \]

\[\frac{-(2.4)}{2(-0.8)} = -1.5 \]
\[y = -0.8(1.5)^2 + 2.4(1.5) + 1 \]

a) What is the maximum height that the ball reaches?
\[2.8 \text{ m} \]

b) If the net is 4 m away and 1.2 m tall, does the ball clear the net?
\[\text{No, lands at } 3.37 \text{ m.} \]

c) How far away does the ball land?
\[3.37 \text{ m} \]

d) At what height was the ball hit?
\[1 \text{ m} \]
Algebra 2 – Quadratic Function Word Problems (Maximum and Minimum)

1.) A ball is thrown vertically upward with an initial speed of 80 feet per second. Its height after t seconds is given by \(h = -16t^2 + 80t \).

How high does the ball go?

\[
\frac{-80}{a(-16)} = 2.5 \\
\begin{align*}
\text{at} (-16) & = 2.5 \\
\text{height} & = -10(2.5)^2 + 80(2.5) \\
\text{height} & = 100 \\
\text{vertex} & = (2.5, 100)
\end{align*}
\]

2.) Suppose that a group of high school students conducted an experiment to determine the number of hours of study that leads to the highest score on a comprehensive year-end exam. The exam score \(y \) for each student who studied for \(x \) hours can be modeled by \(y = -0.853x^2 + 17.48x + 6.923 \).

a.) Which amount of studying produced the highest score on the exam?

\[
\frac{-17.48}{2(-0.853)} = 10.25
\]

\[
y = -0.853(10.25)^2 + 17.48(10.25) + 6.923
\]

\[
y = 96.47
\]

b.) What is the highest score the model predicts?

\[
\text{vertex: (10.25, 96.47)}
\]

3.) The graph at the right shows the height \(h \) in feet of a small rocket \(t \) seconds after it is launched. The path of the rocket is given by the equation: \(h = -16t^2 + 128t \).

a.) How long is the rocket in the air? \(\underline{8 \text{ seconds}} \)

b.) What is the greatest height the rocket reaches? \(\underline{2660 \text{ ft}} \)

c.) About how high is the rocket after 1 second? \(\underline{100 \text{ ft}} \)

d.) After 2 seconds, about how high is the rocket? \(\underline{190 \text{ ft}} \)

e.) After 2 seconds, is the rocket going up or going down? \(\underline{up} \)

f.) After 6 seconds, about how high is the rocket? \(\underline{190 \text{ ft}} \)

g.) After 6 seconds, is the rocket going up or going down? \(\underline{down} \)

h.) Do you think the rocket is traveling faster from 0 to 1 second or from 3 to 4 seconds? Explain your answer.

i.) Using the equation, find the exact value of the height of the rocket at 2 seconds.

\[
h = -16(2)^2 + 128(2)
\]
4.) A rocket carrying fireworks is launched from a hill 80 feet above a lake. The rocket will fall into lake after exploding at its maximum height. The rocket's height above the surface of the lake is given by \(h = -16t^2 + 64t + 80 \).

a.) What is the height of the rocket after 1.5 second?
\[
\begin{align*}
 h &= -16(1.5)^2 + 64(1.5) + 80 \\
 h &= 140 \text{ ft}
\end{align*}
\]

b.) What is the maximum height reached by the rocket?
\[
\begin{align*}
 \frac{-64}{2(-16)} &= 2.5 \\
 y &= -16(2.5)^2 + 64(2.5) + 80 \\
 y &= 144 \text{ ft}
\end{align*}
\]

\begin{align*}
\text{Vertex: } & (2.5, 144) \\
\end{align*}

5.) In a 110 volt circuit having a resistance of 11 ohms, the power, \(W \), in Watts when a current of \(x \) amps is flowing is \(W = 110x - 11x^2 \).\[
\begin{align*}
 W &= -11x^2 + 110x \\
 \frac{-110}{2(-11)} &= 5
\end{align*}
\]

a.) Determine the maximum power that can be delivered to this circuit.
\[
\begin{align*}
 W &= 110(5) - 11(5)^2 \\
 W &= 275 \text{ Watts}
\end{align*}
\]

b.) Determine the current flowing when the power is at a maximum.
\[
\begin{align*}
 \text{5 amps}
\end{align*}
\]

6.) Red aerial mini-flares are used by some boaters in an emergency. The flight of one brand of flare, when fired at a angle of 70° to the horizontal is modelled by the function \(h = -9(t - 3)^2 + 83 \), where \(h \) is the height, in meters and \(t \) is the time, in seconds, since the flare was fired.

a.) State the vertex. \((3, 83)\)

b.) State whether it is a max or a min. \(\text{Max}\)

c.) What is the max/min height reached? \(83 \text{ m}\)

d.) When was the max/min height reached? \(3 \text{ seconds}\)

e.) What is the height reached after 4 seconds?
\[
\begin{align*}
 h &= -9(4 - 3)^2 + 83 \\
 h &= -9(1)^2 + 83 \\
 h &= -9 + 83 = 74
\end{align*}
\]