Use the graph to answer questions 1 – 6.

1.) Does the graph represent a function? How do you know?
Yes, passes the Vertical Line Test.
2.) For what value of \(x \) is \(f(x) \) at its maximum? \(x = 0 \)
3.) Using interval notation, identify the increasing intervals.
\((-3, 0) \cup (3, 5)\)
4.) Using interval notation, identify the decreasing intervals.
\((-\infty, -3) \cup (0, 3)\)
5.) Find \(f(2) \).
\(f(2) = -1 \)
6.) Find \(x \) if \(f(x) = -3 \) \(x = 3 \)

7.) Is the graph of \(f(x) = \frac{1}{2} (x - 1)^2 + 2 \) wider, narrower, or the same width as the parent graph of \(y = x^2 \)?
Wider
8.) Is the graph of \(f(x) = 3(x - 1)(x + 4) \) wider, narrower, or the same width as the parent graph of \(y = x^2 \)?
Narrower
9.) Give the domain and range of the function \(f(x) = x^2 + 5 \).
\(D: (-\infty, \infty) \) \(R: [5, \infty) \)
10.) Give the domain and range of the function \(f(x) = -x^2 - 2 \).
\(D: (-\infty, \infty) \) \(R: (-\infty, -2) \)

Write the equation of each absolute value graph shown.

11.) \(y = a|x - h| + k \)
\(a = \frac{1}{2} \)
Vertex: \((2, 1)\)
12.) \(y = -|x + 2| + 3 \)

Simplify each expression.

13.) \((6x^2y^2 - 2xy^2 + 7xy^2) + (-3x^2y^2 + 4y^2 - 2xy^2) \)
\(3x^2y^2 + 2y^2 + 5xy^2 \)

14.) \((4x^2 + 7x^3y^2) - (6x^2 \leq 7x^3y^2) \)
\(4x^2 + 7x^3y^2 + 6x^2 + 7x^3y^2 \)
\(10x^2 + 14x^3y^2 \)
Answer questions 15 and 16 using the following situation.

A baseball is hit so that its height above ground is given by the equation \(h = -16t^2 + 96t + 4 \), where \(h \) is the height in feet and \(t \) is the time in seconds after it is hit.

15.) What is the \(y \)-intercept of the graph of this function? What does its value mean in this example?

Let \(t = 0 \), \(y = 4 \) \((0,4) \); The ball was hit at a height of 4 ft.

16.) When will the ball hit the ground?

Let \(x = 0 \) \(-16t^2 + 96t + 4 = 0 \)

\[\chi = \frac{-96 \pm \sqrt{(96)^2 - 4(-16)(4)}}{2(-16)} \]
\[\chi = \frac{-96 \pm \sqrt{9408}}{-32} \]
\[\chi = \frac{-96 \pm 97.28}{-32} \]
\[\chi = 0.04 \approx 0.04 \text{ seconds} \]

Use the following equation to answer questions 17 and 18.

Use quad. formula.

17.) Find the values of \(x \) that satisfy the equation. (solutions) Use any method.

Factor by grouping

\[3.5 = 15 \]
\[3x^2 + 5x - 3x - 5 = 0 \]

Signs \((+) (-) \)
\[(x+1)(3x+5) = 0 \]
\[x = 1, -\frac{5}{3} \]

or Quadratic formula

\[x = \frac{-2 \pm \sqrt{4 - 4(3)(-5)}}{6} \]
\[x = \frac{-2 \pm \sqrt{56}}{6} \]
\[x = \frac{-2 \pm 8}{6} \]
\[x = 1, \frac{-5}{3} \]

18.) If \(x > 0 \), what is \(x + 4 \)?

Only 1 is greater than 0 so \(x = 1 \)

19.) How many solutions does the system of non-linear equations shown to the right have?

4: The graphs touch each other in 4 places

Solve each system of equations.

20.) \(x^2 + y = 1 \)
\[2x + y = 2 \]

\[y = -2x + 2 \]

\[x^2 + (-2x + 2) = 1 \]
\[x^2 - 2x + 1 = 0 \]
\[(x-1)(x-1) = 0 \]
\[x = 1 \]

(1,0)

(or use quad. form.

or comp. the square)

21.) \(-3x^2 + y^2 = 9 \)
\[-2x + y = 0 \]
\[y = 2x \]

\[-3x^2 + (2x)^2 = 9 \]
\[-3x^2 + 4x^2 = 9 \]
\[x^2 = 9 \]
\[x = \pm 3 \]

\[y = 2(3) = 6 \]
\[y = 2(-3) = -6 \]

(3, 6)

(-3, -6)
Write each expression in standard form. (Use complex conjugate.)

22.) \(\frac{-2 - 4i}{7i} \cdot \frac{-7i}{-7i} \)

\[
\frac{14i + 28i^2}{-49i^2} = \frac{14i - 28}{49} = \frac{-28 + 14i}{49} \cdot \frac{49}{49i} = \frac{-4 + 2i}{7} \cdot \frac{7}{7i} \]

23.) \(\frac{8 + 7i}{3 - 4i} \cdot \frac{3 + 4i}{3 + 4i} = \frac{24 + 32i + 21i + 28i^2}{9 + 12i - 12i - 16i^2} = \frac{24 + 53i - 2}{9 + 16} \)

\[
= \frac{-4 + 53i}{25} \cdot \frac{25}{25i} = \frac{-53 - 4i}{25} \cdot \frac{25}{25i} \]

24.) Let \(f(x) = 2x + k. \) If \(k \) is a constant and \(f(10) = 23, \) find \(f(-1). \)

\[
\begin{align*}
23 &= 2(10) + k \\
23 &= 20 + k \\
k &= 3
\end{align*}
\]

\[
\begin{align*}
f(-1) &= 2(-1) + 3 \\
f(-1) &= -2 + 3 \\
f(-1) &= 1
\end{align*}
\]

Complete the following using linear programming.

25.) Your club plans to raise money by selling two sizes of fruit baskets. The plan is buy small baskets for $10 and sell them for $16 and to buy large baskets for $15 and sell them for $25. The club president estimates that you will not sell more than 100 baskets. Your club can afford to spend up to $1200 to buy the baskets. Find the number of small and large fruit baskets you should buy in order to maximize profit.

Objective function (max/min):

\[
P = 16x + 25y - \text{NO}!!
\]

Constraints (inequalities):

\[
\begin{align*}
x + y &\leq 100 \\
10x + 5y &\leq 1200 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

Corner Points (vertices of common shaded area):

\[
(0, 0) \quad (0, 100) \quad (100, 0) \quad (0, 80) \quad (120, 0)
\]

Solution (show work – substitute points into objective function):

\[
\begin{align*}
P &= 16(0) + 25(0) = 0 \\
P &= 16(80) + 25(0) = 12800 \\
P &= 16(0) + 25(40) = 1000
\end{align*}
\]

\[
\boxed{P = 12800, 000} \quad \boxed{P = 16(100) + 25(0) = 1600, 000} \]

\[
\text{only purchase 80 large baskets to max. profit}
\]
Write an equation for each parabola shown.

26.)

\[h: 4 \]
\[k: 1 \]
\[p: 2 \]

\[x = \frac{1}{4p} (y-k)^2 + h \]

27.)

\[h: -4 \]
\[k: 0 \]
\[p: -4 \]

\[x = \frac{1}{4p} (y-k)^2 + h \]

Determine if each set of data is linear, quadratic or exponential. If linear or quadratic, write the equation represented by the data.

28.)

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Linear \(m = \frac{1}{2} \)
\(b = 1 \)

\[y = \frac{1}{2}x + 1 \]

29.)

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0.2</td>
<td>1</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>x^5</td>
<td>x^5</td>
<td>x^5</td>
<td>x^5</td>
</tr>
</tbody>
</table>

Exponential

30.)

<table>
<thead>
<tr>
<th>x</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>54</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>x^2</td>
<td>x^3</td>
<td>x^3</td>
<td>x^3</td>
<td>x^3</td>
</tr>
</tbody>
</table>

Exponential

31.)

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>4.5</td>
<td>8</td>
<td>12.5</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>+0.5</td>
<td>+3.5</td>
<td>+4.5</td>
<td>+5.5</td>
<td>+1</td>
</tr>
</tbody>
</table>

Quadratic (see extra paper for work)
\[y = \frac{1}{2}x^2 + 5x + 12.5 \]

32.)

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>1</td>
<td>-2</td>
<td>-5</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
</tbody>
</table>

Linear \(m = -3 \)
\(b = -2 \)

\[y = -3x - 2 \]

33.)

<table>
<thead>
<tr>
<th>x</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2.5</td>
<td>5</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>x^2</td>
<td>x^2</td>
<td>x^2</td>
<td>x^2</td>
<td>x^2</td>
</tr>
</tbody>
</table>

Exponential
\[
\begin{align*}
2 &= a(-3)^2 + b(-3) + c \\
2 &= 9a - 3b + c \\
8 &= a(-1)^2 + b(-1) + c \\
8 &= a - b + c \\
-10.5 &= 9a - 3b \\
13.5 &= -3a + 3b \\
3 &= 6a \\
a &= \frac{3}{6} \\
a &= \frac{1}{2} \\
-4.5 &= 5 - b \\
-5 &= -b \\
b &= 5
\end{align*}
\]

\[y = \frac{1}{2}x^2 + 5x + 12.5\]
\[2 = a(-3)^2 + b(-3) + c \]
\[2 = 9a - 3b + c \]
\[8 = a(-1)^2 + b(-1) + c \]
\[8 = a - b + c \]
\[18 = a(1)^2 + b(1) + c \]
\[18 = a + b + c \]

\[2 = 9a - 3b + c \]
\[(18 = a + b + c) - 1 \Rightarrow 8 = a - b + c \]
\[-18 = -a - b - c \]
\[-16 = 8a - 4b \]
\[-16 = 8a - 4c(5) \]
\[-16 = 8a - 20 \]
\[4 = 8a \]
\[a = \frac{1}{2} \]

\[-10 = -2b \]
\[-2 \]
\[5 = b \]

\[8 = \frac{1}{2} - 5 + c \]
\[8 = 4.5 + c \]
\[c = 12.5 \]

\[a = \frac{1}{2} \]
\[b = 5 \]
\[y = \frac{1}{2}x^2 + 5x + 12.5 \]
\[c = 12.5 \]