Honors Algebra 2: Transformations and Forms of Quadratic Functions Quiz

Questions 1 and 2. Multiple Choice. Write the correct answer choice on the line.

1.) Which function below represents a quadratic function?
 a.) $y = 2(x - 4)^2$
 b.) $x^3 = 8$
 c.) $y + 2 = -3(x + 5)$
 d.) $y = 3(x - 4)(x + 2)$

2.) Which function below is the widest compared to the parent graph?
 a.) $y = 5x^2$
 b.) $y = -7x^2 + 3x$
 c.) $y = 0.5x^2 - 3x + 8$
 d.) $y = x^2$

3.) Describe the transformation of $g(x) = -2(x + 1)^2$ as compared to $f(x) = x^2$.

4.) Write the equation of a parabola (in vertex form) that is shifted 2 units to the right and one unit down as compared to the parent graph.

5.) Convert the function $y = 2x^2 - 4x + 5$ into vertex form.

Graph each equation and answer each question.

6.) $y = x^2 - 4x - 5$
 a.) Does the graph have a maximum or a minimum? ____________
 b.) Vertex: ____________
 c.) Axis of Symmetry Equation: ____________
 d.) Domain: ____________
 e.) Range: ____________
 f.) y - intercept: ____________
7.) \[y = 2(x + 5)^2 - 2 \]

a.) Does the graph have a maximum or a minimum?

b.) Vertex:

c.) Axis of Symmetry Equation:

d.) Domain:

e.) Range:

f.) \(y \) – intercept:

8.) \[y = -2(x - 1)(x + 2) \]

a.) Does the graph have a maximum or a minimum?

b.) Vertex:

c.) Axis of Symmetry Equation:

d.) Domain:

e.) Range:

f.) \(y \) – intercept:

g.) Does the graph open up or down?

9.) A parabola has a vertex of \((2, -1)\) and passes through the point \((4, 0)\). Write the equation of the parabola in vertex form.
Describe transformations from the parent graph of quadratic functions in vertex form.

1.) \(g(x) = -\frac{1}{4}x^2 - 3 \) reflected over x-axis, vertical compression by a factor of \(\frac{1}{4} \), vertical shift down 3

2.) \(f(x) = 2(x + 3)^2 + 2 \) vertical stretch by a factor of 2, horizontal shift left 3, vertical shift up 2

Write quadratic functions in vertex form based on transformation descriptions.

3.) Vertical stretch by a factor of 3, a reflection in the x-axis, and translation 3 units down.
 \[y = -3x^2 - 3 \]

4.) Vertical compression by a factor of \(\frac{1}{2} \), a translation 2 units up, and translation 1 unit right.
 \[y = \frac{1}{2}(x-1)^2 + 2 \]

Graph and analyze quadratic functions in vertex form.

5.) \(y = -(x - 1)^2 + 3 \)
 a.) Vertex: \((1, 3)\)
 b.) Axis of symmetry equation: \(x = 1 \)
 c.) Opens up or down? down
 d.) Wider, narrower, or the same width as \(y = x^2 \)? same
 e.) Domain: \((\infty, \infty)\)
 f.) Range: \((-\infty, 3]\)
 g.) \(y \) - intercept: \((0, 2)\)
 h.) Does the graph have a maximum or minimum? maximum

Write quadratic functions in vertex form as quadratic functions in standard form and vice versa.

6.) \(y = -(x + 4)^2 - 10 \) (to standard)
 \[y = -(x + 4)(x + 4) - 10 \]
 \[y = -(x^2 + 8x + 16) - 10 \]
 \[y = -x^2 - 8x - 26 \]

7.) \(y = \frac{1}{2}x^2 - 6x - 24 \) (to vertex)
 \[\frac{-b}{2a} = \frac{6}{1} = 6 \]
 \[y = \frac{1}{2} \left((6)^2 - 6(6) - 24 \right) \]
 \[y = \frac{1}{2} \left(36 - 36 - 24 \right) \]
 \[y = -18 - 36 - 24 \]
 \[y = -42 \]
 \[y = \frac{1}{2}(x-6)^2 - 42 \]
Graph and analyze quadratic functions in standard form.

8.) \(y = 2x^2 + 4x + 2 \)

\[\frac{-b}{2a} = \frac{-4}{4} = -1 \]
\[y = a(-1)^2 + 4(-1) + 2 = -1 \]
\[y = 2 \cdot -1 + 2 = 0 \]

a.) Vertex: \((-1, 0)\)

b.) Axis of symmetry equation: \(x = -1 \)

c.) Opens up or down? \(\uparrow \)

d.) Wider, narrower, or the same width as \(y = x^2 \)? \(\text{narrower} \)

e.) Domain: \((-\infty, \infty)\)

f.) Range: \([0, \infty)\)

g.) \(y \) - intercept: \((0, 2)\)

h.) Does the graph have a maximum or minimum? \(\text{minimum} \)

Graph and analyze quadratic functions in intercept form.

9.) \(y = \frac{1}{2}(x - 5)(x + 3) \)

\[\frac{5-3}{2} = \frac{2}{2} = 1 \]
\[y = \frac{1}{2}(-4)(4) = -8 \]

a.) Vertex: \((1, -8)\)

b.) Axis of symmetry equation: \(x = 1 \)

c.) Opens up or down? \(\uparrow \)

d.) Wider, narrower, or the same width as \(y = x^2 \)? \(\text{wider} \)

e.) Domain: \((-\infty, \infty)\)

f.) Range: \([-8, \infty)\)

g.) \(y \) - intercept: \((0, -7.5)\)
\[\frac{1}{2}(-5)(3) = -7.5 \]

h.) Does the graph have a maximum or minimum? \(\text{minimum} \)

i.) \(x \) - intercepts: \((5, 0)\) \((-3, 0)\)

Write equations of quadratic functions in vertex form.

10.) Write the equation of the quadratic function (in vertex form) with a vertex at \((-3, -7)\) that passes through point \((-1, 5)\).

\[
\begin{align*}
5 &= a(-1+3)^2 - 7 \\
5 &= a(2)^2 - 7 \\
5 &= 4a - 7 \\
4a &= 12 \\
a &= 3
\end{align*}
\]

\[
\boxed{y = 3(x + 3)^2 - 7}
\]